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Free Field Construction for the ABF Models in
Regime II1
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The Wakimoto construction for the quantum affine algebra Uq(sl2@) admits a
reduction to the q-deformed parafermion algebras. We interpret the latter theory
as a free field realization of the Andrews�Baxter�Forrester models in regime II.
We give multi-particle form factors of some local operators on the lattice and
compute their scaling limit, where the models are described by a massive field
theory with Zk symmetric minimal scattering matrices.
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1. INTRODUCTION

In conformal field theory (CFT), free field construction (or the ``Coulomb
gas'' representation) (1) is the most effective calculational tool for physical
quantities. The same can be said about the vertex operator approach to
solvable lattice models (see, e.g., ref. 2). The latter can be viewed as a
q-deformation of some conformal field models, the most typical example
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being the Andrews�Baxter�Forrester (ABF) models in regime III(3) which
corresponds to the minimal unitary series. Despite its technical importance,
however, no uniform recipe is known at present for finding a free field
representation of a given CFT. Even when it is known, an equally non-tri-
vial task is to do the same for the corresponding off-critical solvable lattice
models. In this article we address this issue in the case of the ABF models
in regime II.(4)

By the level-rank duality for the Boltzmann weights, (5) the ABF models
in regime II at level k are equivalent to the A (1)

k&1 face models in regime III
at level 2. For the latter, a free field realization is already available.(6)

However this picture is rather complicated, since one has to deal with k&1
kinds of oscillators. The Felder complex in higher rank is also quite cum-
bersome.(7) On the other hand, the ABF models in regime II are described
in the conformal limit by the Zk parafermionic CFT, (8) and in the massive
scaling limit by its perturbation by the first energy operator.(9�13) Therefore
one naturally expects that an alternative construction on the lattice is to
invoke the q-deformation of the parafermion theory, (14, 15) where it is suf-
ficient to deal with only two kinds of oscillators and the resolution of Fock
modules has a simpler structure. In this paper we work out this point in
detail. Our purpose is to show that the known results in representation
theory fits nicely the interpretation as a bosonization of lattice models.

The text is organized as follows. In Section 2 we recall the ABF models
and set up the notation. In Section 3 we review the free field realization of
the deformed parafermion theory. We then present various commutation
relations of operators. Comparing them with those in the lattice theory, we
identify the deformed counterpart of the primary fields and the parafer-
mionic currents with the vertex operators (VO's) of type I and type II,
respectively. A simplifying feature is that these deformed parafermionic
currents mutually commute by scalars. To our knowledge, this is the only
known example in the vertex operator approach7 where the type II VO's
do not involve integrals of screening operators. We note also the existence
of a deformation of the Wk currents, which we believe to be equivalent to
the one in refs. (16, 17) with specialization r=k+2. This conforms with
the known equivalence between the Zk parafermionic CFT and the first
member in the Wk minimal series. In Section 4 we calculate form factors of
height variables on one and neighboring two lattice sites. In Section 5 we
take their continuous limit. Section 6 is devoted to the summary and dis-
cussions about open problems. Some technical formulas are gathered in the
Appendices.
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2. ABF MODEL IN REGIME II

2.1. Boltzmann Weights

In this section we recall the ABF model in regime II and set up the
notation. Throughout this article, we fix a positive integer k�2.

The Boltzmann weights of the ABF model(4) have the form

W \a
c

b
d } u+=\(u) W� \a

c
b
d } u+ (2.1)

Here a, b, c, d denote positive integers which we refer to as height variables.
Besides, the weights depend on two real parameters u and x. If 1�a, b, c,
d�k+1 and |a&b|=|b&d |= |d&c|=|c&a|=1, then we set

W� \ a
a\1

a\1
a\2 } u+=1 (2.2)

W� \ a
a\1

a\1
a } u+=

[a\u][1]
[a][1&u]

(2.3)

W� \ a
a�1

a\1
a } u+=

[a�1][&u]
[a][1&u]

(2.4)

Here [u] stands for the function

[u]=xu2�(k+2)&u3x2(k+2)(x2u)

and we use the standard symbols

3p(z)=(z; p)� ( pz&1; p)� ( p; p)� ,

(z1 ,..., zn ; p1 ,..., pm)�= `
n

j=1

`
l1 ,..., lm�0

(1& p l1
1 } } } p lm

m zj )

For all other values of a, b, c, d, we set the weight (2.1) to 0.
In this note we restrict to regime II defined by

0<x<1, &
k
2

<u<0
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We choose the scalar factor \(u) in (2.1) to ensure that the partition function
per site equals to 1. Explicitly

\(u)=x2u�k(k+2) \+(u)
\+(&u)

\+(u)=
(x2k+2+2u, x2k+2+2u; x2k, x2(k+2))�

(x2k+2u, x2k+4+2u; x2k, x2(k+2))�

We have

\(u) \(&u)=1, \(u) \(&k&u)=
[1&u]2

[&u][2&u]

In ref. 3, a free field construction of the ABF model was found in regime III
defined by 0<x<1, 0<u<1. The Boltzmann weights in regime II differs
from that case only in the choice of \(u) made above.

We represent the Boltzmann weights graphically as follows.

F

F

S SW \a
c

b
d } u+=

a

c

u

b

d

2.2. Vertex Operators in the Na@� ve Picture

In this subsection we summarize the vertex operator approach in the
na@� ve picture.(18)

In regime II, there are 2k different ground states labeled by m # Z�2kZ.
Each of them is invarinat under the shift in the NE-SW direction, and
hence is specified by a sequence of heights on a column. Fix a reference
column and a site (say, site 1) on it. Then the m th ground state is given
by the following sequence [l� (m)

j ] j # Z on that column

l� (m)
j&m={ j

2k+2& j
(1� j�k)
(k+1� j�2k)

l� (m)
j+2k=l� (m)

j ( j # Z)

Here the sites on the reference column are numbered by j from south to
north in the increasing order.

Let Hm, a denote the space of states of the half-infinite lattice, in the
sector where the central height (i.e., the one on the reference site 1) is fixed
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to a and the boundary heights are in the ground state m. Namely we set
formally

Hm, a=span[(lj )
�
j=1 | 1�lj�k+1, l1=a, lj=l� (m)

j ( j>>1)]

Notice that Hm, a=0 if a# mod 2. The corner transfer matrices (CTM's)
associated with the north-west, south-west, south-east and north-east quad-
rants operate respectively as

A (a)
NW (u): Hm, a � Hm, a ,

A (a)
SW (u): Hm, a � H&m, a ,

A (a)
SE (u): H&m, a � H&m, a ,

A (a)
NE (u): H&m, a � Hm, a

In the limit of an infinitely large lattice, they have the simple form(4)

A (a)
NW (u)=x&2uH C

(a)
,

A(a)
SW (u)=M (a)x2uHC

(a)
,

A (a)
SE (u)=M (a)x&2uH C

(a)
M (a)&1

,

A(a)
NE (u)=[a] x2(u+k) H C

(a)
M (a)&1

where the ``corner Hamiltonian'' H (a)
C : Hm, a � Hm, a has a discrete and equi-

distant spectrum, and M (a): Hm, a � H&m, a is an operator which does not
play a role in the following. Both of them are independent of u.

Likewise let

8 (a, b)
N (u): Hm, b � Hm+1, a ,

8 (b, a)
W (&u): Hm+1, a � Hm, b ,

8 (a, b)
S (u): H&m, b � H&m+1, a ,

8 (b, a)
E (&u): H&m+1, a � H&m, b

be the half-infinite transfer matrices extending to north, west, south and
east directions, respectively. (Note that the (m+1)th ground state is
obtained from the mth one by shifting it one step to the left.) Normally we
suppress the dependence on the boundary condition m in the notation.
Unlike the case of regime III, our Boltzmann weights do not have the
crossing symmetry. Accordingly there is no simple relation between the
operators 8 (a, b)

N (u) and 8 (a, b)
W (u) (see Fig. 1).

887Free Field Construction for the ABF Models in Regime II



File: 822J 284806 . By:XX . Date:11:12:00 . Time:10:22 LOP8M. V8.B. Page 01:01
Codes: 1738 Signs: 571 . Length: 44 pic 2 pts, 186 mm

Fig. 1. Corner transfer matrices and VO's of type I.

Formal manipulations(18) show that these operators should satisfy
various commutation relations. We have

8 (a, b)
N (u)=x2uHC

(a)
8 (a, b)

N (0) x&2uHC
(b)

,

8 (a, b)
W (u)=x2uHC

(a)
8 (a, b)

W (0) x&2uHC
(b)

The VO's satisfy the commutation relations

8(a, b)
N (u2) 8 (b, c)

N (u1)=:
g

W \a
b

g
c } u1&u2+ 8 (a, g)

N (u1) 8 (g, c)
N (u2) (2.5)

8(a, b)
W (u2) 8 (b, c)

W (u1)=:
g

W \c
g

b
a } u1&u2+ 8 (a, g)

W (u1) 8 (g, c)
W (u2) (2.6)

8(a, b)
N (u1) 8 (b, c)

W (u2)=:
g

W \g
a

c
b } u1&u2 + 8(a, g)

W (u2) 8 (g, c)
N (u1) (2.7)

We have in addition

:
g

8 (a, g)
W (u) 8 (g, a)

N (u)=id (2.8)

:
g

[ g]
[a]

8(a, g)
N (u) 8 (g, a)

W (k+u)=id (2.9)
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The last two equations are consequences of the unitarity of the Boltzmann
weights

:
g

W \ a
g

b
c } u+ W \a

d
g
c } &u+=$bd

and the second inversion relation

:
g

[ g]
[c]

W \d
b

c
g } &k&u+ W \a

c
b
g

| u+=$ad
[b]
[d ]

In Section 3 we shall present a bosonic realization of the relations
(2.5)�(2.9).

2.3. Local Height Probabilities

Consider successive n sites i1 ,..., in on a row of the lattice, numbered
from right to left. We regard i1 as the reference site used to label the
ground states. Fixing the boundary heights to the ground state m, we let
Pan ,...a1

(m) denote the joint probability that the height variable lij
, takes the

value aj , j=1,..., n. These are the n point local height probabilities (LHP's).
In terms of the CTM and VO's, they can be expressed as

Pan ,..., a1
(m)=

1
Zm

[a1] trHm, a1
(x2kHC

(a1)

8 (a1 , a2)
W (0) } } } 8(an&1 , an)

W (0)

_8 (an , an&1)
N (0) } } } 8 (a2 , a1)

N (0))

Zm= :
k+1

a=1

[a] trHm, a
(x2kH C

(a)
)

It turns out that (with an appropriate normalization of H (a)
C ) Z=Zm is

independent of m. Obviously Pan ,..., a1
(m)=0 for a1#m mod 2.

The following result for n=1 is due to Andrews, Baxter and
Forrester.(4)

Pa(m)=
[a] trHm, a

(x2kHC
(a)

)

Z
=x(k+2)�4[a] c4k(a&1)

4k(m) ({) (2.10)

where c4k(l )
4k(m)({) stands for the string function(19) for integrable sl@2 -modules.

Explicitly it is

c4k(l )
4k(m)({)='({)&3 \ :

n1�|n2 |

& :
&n1>|n2 |

+
_(&1)2n1 (x2k) ((l+1+2n1(k+2))2�4(k+2)&(m2+2n2k)2�4k)
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for l#m mod 2 and c4k(l )
4k(m)({)=0 for l�m mod 2. In the above, we set

x2k=e2?i{, '({)=(x2k)1�24 (x2k; x2k)� , 4k( j )=(k& j ) 40+ j41 , and the
sum is taken over n1 , n2 # 1

2Z with n1&n2 # Z. We have

Pa(m)=0 (a#m mod 2),

:
k+1

a=1

Pa(m)=1

Pa(&m)=Pa(m)

As observed in ref. 3 for regime III, the nearest neighbor LHP's (n=2)
can be written in terms of the one point LHP. To see this it suffices to note
the following relations which are obvious consequences of the definition.

P1, 2(m)=P1(m+1), P2, 1(m)=P1(m),

Pa&1, a(m)+Pa+1, a(m)=Pa(m),

Pa, a&1(m)+Pa, a+1(m)=Pa(m+1)

These properties fix Pa\1, a(m) uniquely in terms of the one point LHP
(2.10) as follows.

Pa+1, a(m)= :
1�s�a

s#a mod 2

Ps(m)& :
1�s�a

s�a mod 2

Ps(m+1) (2.11)

Pa&1, a(m)=& :
1�s<a

s#a mod 2

Ps(m)+ :
1�s<a

s�a mod 2

Ps(m+1) (2.12)

The right hand sides of (2.11)�(2.12) automatically satisfy Pk+2, k+1(m)=
Pk+1, k+2(m)=0, as it should be.

3. FREE FIELD REALIZATION

The q-deformation of the Wakimoto module over the affine Lie algebra
sl@2 was found by several authors(14) (see references in ref. 14 as to the other
variants of free field realizations), using three kinds of bosonic fields. The
deformed parafermion theory is obtained by dropping one of these fields.
In this section we give some details of the latter theory, and interpret it as
a free field realization of the ABF model in regime II. A part of the results
are given in ref. 15. The various relations given in Propositions 3.1, 3.3�3.6
are new.
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3.1. Basic Operators

The main objects in the deformed parafermion theory are the vertex
operators (VO's) of type I

8*\(u), 8\(u) (3.1)

and of type II

9+(u)=9 -(u), 9&(u)=9(u) (3.2)

The VO's of type I (3.1) are a lattice counterpart of the simplest primary
fields in conformal theory, while those of type II (3.2) corresponds to the
parafermions. In addition, there are also some auxiliary operators: the
so-called screening current and the !-' system which we denote by

S(u), !(u), '(u)

respectively. All these operators act on the direct sum of Fock modules
F=�m#l mod 2 Fm, l labeled by m, l # Z. Their explicit formulas are given
in Appendix A. Here we only mention their basic features.

The operators

9\(u), 8*&(u), 8&(u), S(u), !(u), '(u)

are either an exponential of a bosonic field or a sum of two such terms. In
contrast, the formulas for 8*+(u), 8+(u) comprise integrals. To elaborate
on the last point, let us introduce the screening charge

X(u)=�
CX (z)

dz$ S(u$)
[u&u$& 1

2&P1]
[u&u$& 1

2]

Here we set z=x2u, z$=x2u$, dz$=dz$�(2?iz$), and P1 denotes a ``zero-
mode'' operator. For more details we refer to Appendix A. The contour
CX (z) is a simple closed curve encircling the origin counterclockwise in the
z$-plane, such that z$=zx&1+2(k+2) n (n�0) are inside CX (z) and z$=
zx&1+2(k+2) n (n<0) are outside CX (z). Using the screening charge, the
``plus'' components of the type I VO's are given by

8+(u)=8&(u) X(u+k+1),

8*+(u)=&8*&(u) X(u)

where the product A(u) B(v) is defined to be the analytic continuation from
the domain |x2u|>>|x2v|.
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Table I.

8\(u) 8*\(u) 9\(u) S(u) !(u) '(u)

Fm$, l $ Fm+1, l�1 Fm&1, l�1 Fm�2, l Fm, l&2 Fm&k, l&(k+2) Fm+k, l+k+2

Each of the operators 8\(u), 8*\(u), 9\(u), S(u), !(u), '(u) sends one
Fock space Fm, l to another Fm$, l $ with a different label (m$, l $). The change
of label is listed in Table I.

3.2. Commutation Relations

In the next three propositions we state the commutation relations
among the operators 8\(u), 8*\(u) and 9\(u). Set

P=P1+1

Proposition 3.1. The operators 8\(u), 8*\(u) satisfy the commu-
tation relations

8=2
(u2) 8=1

(u1)=: W \ P
P+=2

P+=$1
P+=1+=2 } u1&u2+ 8=$1

(u1) 8=$2
(u2)

8*=2
(u2) 8*=1

(u1)=: W \P+=1+=2

P+=$1

P+=2

P } u1&u2+ 8*=$1
(u1) 8*=$2

(u2)

8=1
(u1) 8*=2

(u2)=: W \P+=$2
P

P+=1+=2

P+=1 } u1&u2+ 8*=$2
(u2) 8=$1

(u1)

where the Boltzmann weights are given in (2.2)�(2.4). The sums are taken
over =$1 , =$2=\1 such that =$1+=$2==1+=2 . Moreover we have the inversion
relations

:
=

8=*(u) 8&=(u)=id (3.3)

:
=

8=(u)[P] 8*&=(k+u)=[P] id (3.4)

In the next propositions we set

[u]*=x(u2�k)&u3x 2k(x2u)
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Proposition 3.2. The following commutation relations hold.

9\(u2) 9\(u1)=
[u1&u2+1]*
[u1&u2&1]*

9\(u1) 9\(u2),

9\(u2) 9�(u1)=
[u1&u2&1+ k

2 ]*
[u1&u2+1+ k

2 ]*
9�(u1) 9\(u2)

Moreover, as u2 � u1&k�2 we have

9\(u2) 9 �(u1)=
k
2?

g*
u2&u1+ k

2

_id+O(1)

where g*=(?�(k log x))((x2k&2; x2k)� �(x2; x2k)�).

Proposition 3.3.

9+(u2) 8\(u1)=
[u1&u2& 1

2+ k
2 ]*

[u1&u2+ 1
2+ k

2]*
8\(u1) 9+(u2),

9+(u2) 8*\(u1)=
[u1&u2+ 1

2+ k
2 ]*

[u1&u2& 1
2+ k

2]*
8*\(u1) 9+(u2),

9&(u2) 8\(u1)=
[u1&u2+ 1

2]*
[u1&u2& 1

2]*
8\(u1) 9&(u2),

9&(u2) 8*\(u1)=
[u1&u2& 1

2]*
[u1&u2+ 1

2]*
8*\(u1) 9&(u2)

3.3. Free Fields Resolution

The space of states for the deformed parafermion theory is constructed
following a procedure well known in conformal field theory.(20) This is
done in two steps. The first step is to introduce a certain subspace F� m, l of
the Fock space Fm, l using '(u). The second step is to consider a complex
consisting of these F� m, l , in which the coboundary maps are given by
powers of the screening charge X(u). The space of states is then defined as
the 0th cohomology of this complex.

Let

'0 : Fm, l � Fm+k, l+k+2
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denote the zeroth Fourier coefficient of '(u). It is well defined provided
m#l mod 2. We set

F� m, l=Ker '0 |Fm, l

Then we have the following resolution of F� m, l by Fock spaces (see
Appendix B)

0 w� F� m, l w� Fm, l w�
'0

Fm+k, l+k+2 w�
'0

Fm+2k, l+2(k+2) w�
'0 } } } , (3.5)

} } } w�
'0

Fm&2k, l&2(k+2) w�
'0

Fm&k, l&(k+2) w�
'0

F� m, l w�0 (3.6)

The following proposition shows that the operators S(u), 9\(u),
8\(u) and 8*\(u) have a well-defined action on the subspace F� m, l .

Proposition 3.4. We have

'0 S(u)=&S(u) '0 ,

'0 9\(u)=&9\(u) '0 ,

'08\(u)=8\(u) '0 ,

'08*\(u)=8*\(u) '0

Next we fix l, m # Z with 0�l�k, l#m mod 2. Consider a sequence
Cm, l

} } } ww�
X&2

F� m, &l&2+2(k+2) ww�
X&1

F� m, l w�
X0

F� m, &l&2 w�
X1

F� m, l&2(k+2) w�
X2 } } }

(3.7)

defined by appropriate powers of the screening charge X(u), i.e.,

X2j=X(u) l+1: F� m, l&2j(k+2) � F� m, &l&2&2j(k+2) ,

X2j+1=X(u)k&l+1: F� m, &l&2&2j(k+2) � F� m, l&2( j+1)(k+2)

The following can be shown in exactly the same way as in ref. 21.

Proposition 3.5. The maps Xj are independent of u, and Cm, l is a
cochain complex:

Xj Xj&1=0 ( j # Z)
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The following statement concerning the cohomology group of this
complex seems quite plausible (cf. ref. 20).

H j (Cm, l )=0 ( j{0) (3.8)

As we do not have a rigorous mathematical proof, we assume henceforth
the validity of (3.8). By the Euler�Poincare� principle, the character of the
remaining cohomology H0(Cm, l ) then becomes

trH 0(Cm, l )(x2kD)=xk2�4(k+2)(x2k; x2k)� c4k(l )
4k(m)({),

Z= :
0�l�k

l#m mod 2

[l+1] trH 0(Cm, l )
(x2kD)=x&(k+1)�(k+2)(x2k; x2k)�

giving the same formula as that of the one point LHP (2.10).

Proposition 3.6.

Xj9\(u)=9\(u) Xj ,

Xj8\(u)=8�(u) Xj ,

Xj8*\(u)=8*�(u) Xj

This proposition ensures that 8\(u), 8*\(u) and 9\(u) give rise to
well-defined operators on the cohomology H0(Cm, l ). We abuse the notation
and denote them by the same letters.

3.4. Identification with Lattice Theory

The construction of this section is related to the lattice theory in
Section 2 as follows. We make the following identification:

(i) The space of states of the lattice model (with central height a
and boundary condition m) with the 0th cohomology of Cm, a, &1 ,

Hm, a=H 0(Cm, a&1)

(ii) The corner Hamiltonian H (a)
C with the grading operator D.

(iii) The half-infinite transfer matrices with the type I VO's

8 (a&=, a)
N (u)=8=(u)|H 0(Cm, a&1) ,

8 (a&=, a)
W (u)=8=*(u)|H 0(Cm, a&1)

(iv) The creation�annihilation operators of particles and anti-par-
ticles with the type II VO's 9\(u).
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As we already mentioned, with this identification the characters of the two
spaces match. The commutation relations for VO's of type I expected from
the lattice theory (2.5)�(2.9) are recovered in Proposition 3.1. In Section 5,
we will comment about the agreement with the known results on the
excitation spectrum and the S-matrix(11) in the scaling limit.

Correlation functions and form factors of local operators are given as
traces of operators acting on the physical space H 0(Cm, l ). Let O stand for
x2kD times a product of operators of the form 9=(u), 8=(u) and 8=*(u). For
simplicity we consider the case where there are an equal number of 9+(u)'s
and 9&(u)'s. Proposition 3.6 shows that

Oi '0='0Oi ,

Xj Oi=O1&i Xj ( j#i mod 2)

where O0=O, and O1 signifies the operator obtained from O by negating the
indices = of 8=(u) and 8=*(u). The resolutions (3.5), (3.6), (3.7) afford a
procedure for computing the trace as follows.

trH 0(Cm, l )
(O)= :

s # Z

trF� m, l&2s(k+2)
(O0)& :

s # Z

trF� m, &l&2&2s (k+2)
(O1) (3.9)

trF� m, l
(Oi )= :

n�0

(&1)n trFm+kn, l+(k+2) n
(Oi )

=& :
n<0

(&1)n trFm+kn, l+(k+2) n
(Oi ) (3.10)

Taking O=x2kD8=*(u) 8&=(u), we have verified directly that the formula
thus obtained reproduces the LHP (2.11)�(2.12) for neighboring lattice
sites.

3.5. Fusion of Parafermions and W Currents

The type II VO's 9&(u), 9+(u) play the role of creation operators of
excitations over the ground state. Besides them, there are altogether k&1
kinds of ``elementary'' particles in regime II, as expected from the level-rank
duality.(5) The standard fusion procedure provides us with a free field
realization 9a(u) defined recursively as

91 \u$&
a
2+ 9a \u+

1
2+

=
1

1&z�z$
xa(a+1)�k (x2a, x2a+2k+2; x2k)�

(x2k, x2k+2; x2k)�
9a+1(u)+O(1) (u$ � u)
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where 91(u)=&(x&x&1) 9&(u). A more explicit expression is given in
(A.1). We have the following commutation relations

9a(u2) 8\(u1)=
_u1&u2+

a
2&

*

_u1&u2&
a
2&

*
8\(u1) 9a(u2)

9a(u2) 9b(u1)
(3.11)

= `
a

s=1

`
b

s$=1

_u1&u2+1+
a&b

2
&(s&s$)&*

_u1&u2&1+
a&b

2
&(s&s$)&*

} 9b(u1) 9a(u2)

=
_u+

a+b
2 &*

_u&
a+b

2 &*

_u+
|a&b|

2 &*

_u&
|a&b|

2 &*
`

min(a, b)&1

s=1

_u+
|a&b|

2
+s&*2

_u&
|a&b|

2
&s&*2 } 9b(u1) 9a(u2)

where u=u1&u2 . These relations agree with the known results about the
excitation spectra (5.1) and the scattering matrices (5.6) in the scaling field
theory discussed in Section 5.

The operator 9k(u) commutes with 9\(v) and Xj , commutes or anti-
commutes with '0 , and anticommutes with 8\(v). It can be shown that it
is also invertible. We expect that on the cohomology it is independent of
u and defines an isomorphism @: H0(Cm, l )&H0(Cm+2k, l ). We also expect
that 9k&1(u) defines the same operator as @ b 9+(u).

The level-rank duality also suggests the existence of the deformed Wk

currents(16, 17) in the parafermionic description of the ABF models. Indeed,
the first deformed W current W1(u) can be obtained either as fusion of
type I VO's (z2 � x2(k+2)z1)

8&(u2) 8*+(u1)

=\1&x2(k+2) z1

z2 +
x1�k

[k+1]x

(x2k, x&4; x2k)�

(x&2, x&2; x2k)�
W1(u1)+ } } }

897Free Field Construction for the ABF Models in Regime II



or as that of type II VO's (z2 � xk+2z1)

9&(u2) 9+(u1)

=
1

1&xk+2(z1 �z2)
x (2�k)+1

(x&x&1)2 [k+1]x

(x&4; x2k)�

(x2k; x2k)�
W 1 \u1&

k+1
2 ++ } } }

Explicit formulas of W1(u), as well as those of the higher currents W j (u)
( j=2, 3,...), are given in Appendix A. We expect that these W j (u) ( j�1)
generate the same deformed W algebra for slN in ref. 16, under the following
identification

N=k, q=x2(k+1), t=x2(k+2) ( p=qt&1=x&2)

We have checked a part of the relations for W j (u) (Eq. (8) in ref. 16), but
have not verified such relations as Wk(u)=1 which are expected to hold
only at the level of the cohomology.

4. FORM FACTORS

4.1. Traces of Type II Operators

As a simplest example of form factors of local operators, let us con-
sider the quantity

Q (n, n)
a (m)=(Zg*n)&1 [a]

_trHm, a
(x2kD9+(v1) } } } 9+(vn) 9&(v$1) } } } 9&(v$n))

To simplify the notation, we have not exhibited explicitly the dependence
of Q (n, n)

a (m) on the parameters vj , v$j . For the same reason we will often
suppress the superscript (n, n). Note that Qa(m)=0 for a#m mod 2.

Hereafter we set

{=&
ik
?

log x

It is a standard task to compute traces of bosonic operators over the Fock
space. After the working outlined in Appendix C, we find the following
expression.
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Qa(m)= :
+1 ,..., +n=\1
&1 ,..., &n=\1

}(v, +, &) `
n

i=1

+i &i

_ `
1�i< j�n

_vj&vi+
+i&+ j

2 &*

[vj&vi&1]*
F(vj&vi )

F(0)

_ `
1�i< j�n

_v$j&v$i+
&i&&j

2 &*

[v$j&v$i&1]*
F(v$j&v$i )

F(0)

_ `
n

i, j=1

_v$j&vi&
k
2

&
+i+&j

2 &*

_v$j&v i&
k
2&

*
F(0)

F \v$j&vi&
k
2+

_1m, a&1 \ {
2k

(+&&),
{
k \

2v
k

&
++&

2 + } {+
In the above, we have set v=�n

i=1 (v$i&vi ), +=�n
i=1 +i , &=�n

i=1 &i . The
function 1m, l ( y1 , y2 | {)=1 (0, 0)

m, l ( y1 , y2 | {) is defined in (C.6). The func-
tions F(v) and }(v, +, &) are defined as follows.

F(v)=
(x2(k+1+v), x2(k+1&v); x2k, x2k)�

(x2(k&1+v), x2(k&1&v); x2k, x2k)�
,

}(v, +, &)=
[a]
Z \&i{

'({)3

[1]*+
n

_x((++&)�k&(2�k) n) v+(n2�2)+((+2+& 2)�4k)&(kn�4)&(((k+1)�2k) +&)+(kc�12)

(4.3)

with c=2(k&1)�(k+2).
Using (C.7), (C.8) we see that Qa(m+2k)=Qk+2&a(m+k)=Qa(m).

Remark. We see from (C.3), (C.4) that the contribution of the
oscillator part to the trace (4.1) is convergent if x=2&=1<|z1 �z2 |<x=2&=1&2k.
For k>2 there is a non-empty domain of convergence common to all
=1 , =2 . The case k=2 of the Ising model is exceptional and needs a separate
treatment by analytic continuation. For the rest of the paper we assume
k�3.
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4.2. Neighboring Heights

As the next example, let us consider the trace involving two type I
VO's,

Qb, a(m)=(Zg*n)&1 [a] trHm, a
(x2kD8*(a, b)(u) 8(b, a)(u)

_9+(v1) } } } 9+(vn) 9&(v$n) } } } 9&(v$n))

Here 8(a&=, a)(u) means 8=(u)|Hm, a
, and similarly for 8*(a, b)(u).

We have already mentioned that the two point LHP for the neighboring
height variables (2.11), (2.12) can be expressed simply in terms of one point
LHP's. Let us apply the same argument to compute Qb, a(m). The first
inversion identity (3.3) entails that

Qa+1, a(m)+Qa&1, a(m)=Qa(m) (4.4)

with Qa(m) given by (4.1). On the other hand, the second inversion relation
(3.4) together with the cyclicity of the trace implies

Qb, b&1(m)+Qb, b+1(m)=Qb(m+1) G (4.5)

The factor

G= `
n

j=1

[u&vj+
1
2+ k

2]*
[u&v j&

1
2+ k

2 ]*
[u&v$j&

1
2]*

[u&v$j+
1
2 ]*

arises from the commutation relations between type I and type II VO's.
Solving the relations (4.4), (4.5) under the condition Q2, 1(m)=Q1(m),
Q1, 2(m)=Q1(m+1) (which can be verified using the integral representa-
tions), we obtain

Qa+1, a(m)= :
1�s�a

s#a mod 2

Qs(m)& :
1�s�a

s�a mod 2

Qs(m+1) G,

Qa&1, a(m)=& :
1�s<a

s#a mod 2

Qs(m)+ :
1�s<a

s�a mod 2

Qs(m+1) G

The above reasoning does not seem to generalize easily to the case
where more than two VO's of type I are present.

5. SCALING LIMIT

Basic facts about the general RSOS models and their scaling limit
have been worked out by Bazhanov and Reshetikhin, (11) by diagonalizing
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the row-to-row transfer matrix. First we briefly review their results special-
izing to the present case of the ABF models in regime II. Then we work out
new expressions for form factors by taking the scaling limit of the formulas
on the lattice.

5.1. Review of Known Results

Denote by H the Hamiltonian of the lattice model related with the
row-to-row transfer matrix T as

H=
1

4?$
d

du
log T (u) } u=0

where $ is the lattice spacing. The excitation spectrum over the ground
state found from the Bethe ansatz has the form

=a(v)=
1

4?$
d
dv

log
[v+ a

2]*
[v& a

2]*
, (1�a�k&1) (5.1)

The energies |=a(v)| are periodic functions with the period &i?�log x, and
have a minimum at v=&i?�2 log x. The analysis of this function shows
that there is a non-zero gap in the spectrum, and the corresponding con-
tinuous model is a massive field theory.

Introduce the rapidity variable ; by

v=
ik
2?

;&
i?

2 log x
(5.2)

and let

p=e? 2�((k+2) log x) (5.3)

be the temperature parameter of the lattice model. In the scaling limit

log x � 0, $ � 0, p(k+2)�k $&1 � const=
kM

2 sin(?�k)
(5.4)

while keeping ; fixed, (5.1) gives a massive relativistic spectrum

lim
log x � 0

=a \ ik
2?

;&
i?

log x+=Ma cosh ;
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Here the mass Ma of the particle a is defined by

Ma=
sin

?a
k

sin
?
k

M

The scattering matrices Sab(;) of these particles are diagonal and have
a very simple form. For the fundamental particle�antiparticle, it is given by
``minimal'' S matrices of the Zk symmetric model proposed for the first time
in ref. 22,

S11(;)=S1� 1� (;)=
sinh \;

2
+

i?
k +

sinh \;
2

&
i?
k +

(5.5)S11� (;)=S1� 1(;)=S11(i?&;)

In general, we have

Sab(;)= fa+b(;) f |a&b|(;) `
min(a, b)&1

s=1

f |a&b| +2s(;)2 (5.6)

where

fA(;)=
sinh \;

2
+

i?A
2k +

sinh \;
2

&
i?A
2k +

The particles in the scaling theory are not self-conjugate except for the case
k=2 of the Ising model. The charge conjugation identifies the antiparticle
a� of a with the particle k&a, reflecting the additional Z2 symmetry of the
model.

It has been found in refs. 9�13 that the ultraviolet properties of the
scaling theory are described by the parafermionic CFT(8) with the central
charge

c=2
k&1
k+2
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According to these works, one can treat the model in the scaling region
as the CFT perturbed by the first energy operator with the left and right
conformal dimensions

20, 2=
2

k+2

All these results agree well with the algebraic picture we have followed.
The vertex operators of type II are identified with operators that create
eigenstates of the row-to-row transfer matrix.(2) Writing the formal limit
(5.4) of 9a(v) as Za(;), where v and ; are related as in (5.2), we find that
the commutation relations of Proposition 3.2 and (3.11) become

Za(;1) Zb(;2)=Sab(;1&;2) Zb(;2) Za(;1) (5.7)

Thus the operators Za can be interpreted as generators of the Zamolodchikov�
Faddeev algebra in the angular quantization approach.(23, 24) The com-
mutation relations between 9\(0) and 9a(v) (Proposition 3.3) ensure that
the states created by acting with the type II operators on the vacuum have
the eigenvalues (5.1) of the corresponding Hamiltonian.

Our present aim is to take the continuous limit of the formulas in the
previous section, and to interpret them as Zk -neutral form factors of some
operators in the Zk -symmetric model. We will however discuss neither the
Lagrangian description of the present model nor the problems of identifica-
tion and normalization of local operators.

General aspects of the form factors in diagonal scattering theories with
Zk symmetry were discussed in ref. 25, where a recursive system of func-
tional equations have been written. Another well-known example of theories
with such a symmetry is the affine Ak&1 Toda models. Its S matrix for
fundamental particles differs from S11 (5.5) by a coupling-dependent factor
which has no poles and zeros in the physical region. For the affine Toda
models, the two- and four-particle form factors have been determined in refs.
25 and 26. Our results below are very similar to those for the affine Toda case.

5.2. Projection Operators

Let us denote by |0) m the 2k degenerate ground states in regime II.
They are related to each other by a spatial translation. For the discussion
of the continuous limit it is more convenient to deal with eigenstates with
respect to the translation operator on the lattice,

1

- 2k
:

k&1

m$=&k

ei?mm$�k |0) m$ (5.8)
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Let Pra stand for the projection operator onto the sector where the central
height takes the value a. We shall focus attention to form factors of the
linear transform

Pr@a=
&1

- 2k
:

k+1

a$=1

sin
?aa$
k+2

sin
?a$

k+2

Pra$

with respect to the translationally invariant vacuum m=0 in (5.8). Thus
the quantities we study in the continuous limit are

Q� (n, n)
a =

&1
2k

:
k+1

a$=1

:
k&1

m=&k

sin
?aa$
k+2

sin
?a$

k+2

Q (n, m)
a$ (m) (5.9)

where Q (n, n)
a$ (m) is given by (4.1). In the angular quantization approach to

affine Toda field theory, similar operators are attributed to the exponential
operators.(26) Note that Q� (n, n)

a =0 if a is even.

5.3. Two-Particle Form Factors

To illustrate the procedure of taking the scaling limit, let us consider
in some details the simplest case n=1, corresponding to the particle�anti-
particle form factors.

To find the limit (5.4) of Q� (1, 1)
a it is convenient to introduce the

conjugate modulus transformation. The standard formulas for the theta
functions give

[u]=� ik
{(k+2)

e&i((k+2)�4k) ?{%1 \ ?u
k+2

; &
k

{(k+2)+
[u]*=�i

{
e&(i?�4) {%1 \?u

k
; &

1
{+

%1(u; {)=2 :
�

n=1

(&1)n ei?{(n&1�2)2
sin(2n&1) u
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To deal with the function 1m, l we borrow the technique of ref. 27, as men-
tioned in Appendix C. With the notation ;=;1&;$1 , the expression (4.2)
can be rewritten in the following form.

Q (1, 1)
a (m)=

e(i?�2k) {((i;�?)+1)2

k+2
' \&

1
{+

2

_
%1 \ ?a

k+2
; &

k
{(k+2)+

%1 \?
k

; &
1
{+

F(0)

F \ k
2?i

(;&i?)+

_ :
+, &=\1

+&
%1 \i;

2
+

?
2k

(++&)+
?
2

; &
1
{+

%1 \i;
2

+
?
2

; &
1
{+

_2 :
k

l $=0

:
k&1

m$=0

sin
?a(l $+1)

k+2

_e&i?mm$�k1m$, l $ \+&&
2k

, &
i;
?k

&
++&

2k } &
1
{+

From the sum over m and a$, the linear transform (5.9) selects only
one term (m$=0, l $=a&1). Thus we have to analyze the limiting behavior
of 10, l ,

10, l \+&&
2k

, &
i;
?k

&
++&

2k } &
1
{+

=
1

'(&1�{)2 \ :
n1�|n2 |

& :
&n1>|n2 |

+
_(&1)2n1 p2((k+2)�k)(((l+1+2n1(k+2))2�4(k+2))&n 2

2k)

_e(?i�2k)(+&&)(l+1+2(k+2) n1)+2?i(i;�?+(++&)�2) n2

where p is defined in (5.3) and the sum is taken over n1 , n2 # 1
2 Z with

n1&n2 # Z. The leading contribution to the sums comes from the term with
n1=n2=0. In the limit (5.4), we thus find

10, l \+&&
2k

, &
i;
?k

&
++&

2k } &
1
{+

= p2((k+2)�k)(20, l&c�24)(e(?i�2k)(+&&)(l+1)+O( p2((k+2)�k)))
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Here 20, l stands for the conformal dimension of Zk-neutral primary fields
in the parafermionic CFT

20, l=
(l+1)2&1

4(k+2)
(l#0 mod 2)

The limit of the remaining terms can be computed directly. For example,

lim
log x � 0

F(0)
F((k�2?i )(;&?i ))

=F min
11� (;)

where we introduced the minimal form factor for the particle�antiparticle
scattering(28)

F min
11� (;)= `

�

n=1

1 \ i;
2?

+
1
k

+n+
1
2+ 1 \&

i;
2?

+
1
k

+n&
1
2+ 1 \n&

1
k+

2

1 \ i;
2?

&
1
k

+n+
1
2+ 1 \&

i;
2?

&
1
k

+n&
1
2+ 1 \n+

1
k+

2

normalized as F min
11� (i?)=1. As for the sum over different components of

vertex operators we use

:
+, &=\1

+&e(?i�2k)(+&&) a cosh \;
2

+
i?
2k

(++&)+
=4 cosh

;
2

sin
?(a&1)

2k
sin

?(a+1)
2k

This leads us to the simple expression for the two-point form factor of the
projection operators

Q� (1, 1)
a =&2

sin
?(a&1)

2k
sin

?(a+1)
2k

sin
?
k

p2((k+2)�k) 20, a&1 F min
11� (;)_(1+o(1))

As we expect from the results of ref. 25, there is no singularity at ;=i?.
In the next subsection, we compute the scaling limit for the case of

multi-particles in a similar manner. We note in passing that

lim
log x � 0

F \ k
2?i

;+
F(0)

=
F min

11 (;)

sinh
;
2

sinh \;
2

+
i?
k +
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where the minimal two particle form factor F min
11 (;) reads (28)

F min
11 (;)=sinh

;
2

sinh \;
2

+
i?
k +

_ `
�

n=1

1 \ i;
2?

&
1
k

+n+ 1 \&
i;
2?

&
1
k

+n+ 1 \n+
1
k+

2

1 \ i;
2?

+
1
k

+n+ 1 \&
i;
2?

+
1
k

+n+ 1 \n&
1
k+

2

5.4. Many Particles

To present the result in the general case, it is convenient to use the
formal bosonization rule as explained in refs. 26 and 29. Let us introduce

Ba
1(;)=& :

+=\1

+e&+?ia�2kZ1, +(;) (5.10)

Ba
1� (;)= :

+=\1

+e +?ia�2kZ1� , +(;) (5.11)

Here Z1, +(;) and Z1� , +(;) are some operators, for which we assume the
contraction rules

((Z1, +(;1) Z1, &(;2))) =((Z1� , &+(;1) Z1� , &&(;2)))

=
F min

11 (;)

sinh \;
2

+
i?
k + sinh \;

2
&

i?
2k+

sinh \;
2

&
i?
2k

(+&&)+
2 sin

?
k

sinh
;
2

,

((Z1, +(;1) Z1� , &(;2))) =((Z1� , &+(;1) Z1, &&(;2)))

=F min
11� (;)

cosh \;
2

+
i?
k

(++&)+
2 sin

?
k

cosh
;
2

where ;=;1&;2 , and the Wick theorem as in (C.2) where C is replaced
by

C1=
1

- 2 sin(?�k)
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The prescription (5.10), (5.11) is analogous to the one for the free field
representation of form factors of the ``exponential fields''(29, 26) in the sine-
Gordon and affine Toda theories. The exponential factors e\?ia�2k are the
only remnant of the ``zero mode'' part.

The limit of the formula (5.9) can be written compactly as

lim
log x � 0

( p&2((k+2)�k) 20, a&1Q� (n, n)
a )

=((Ba
1� (;1) } } } Ba

1� (;n) Ba
1(;$1) } } } Ba

1(;$n)))

= `
1�i< j�n

F min
11 (; i&;j )

(xi&|2xj )(xi&|&2xj )
} `

1�i< j�n

F min
11 (;$i&;$j )

( yi&|2yj )( yi&|&2yj )

_ `
1�i, j�n

F min
11� (;i&;$j )

x i+ yj
_C 2n

1 22n(n&1)_n&1
n {n&1

n R (n, n)
(a+1)�2(x; y) (5.12)

The notation is as follows. We set xi=e ;i, yi=e ;$i, _r=_r(x), {r=_r( y)
with

`
n

j=1

(t+xj )= :
n

r=0

tn&r_r(x)

|=e?i�k, and [l ]=| l&|&l. The polynomials R (m, n)
: (x; y) are defined by

R (m, n)
: (x; y)= :

+1 ,..., +m=\1
&1 ,..., &n=\1

`
m

i=1

+ i |(:&m+n) +i } `
n

j=1

&j |(:+m&n) &j

_ `
1�i< j�m

xi | +i&xj | +j

xi&xj
} `

1�i< j�n

y i |&i& yj |&j

yi& yj

_ `
1�i�m
1� j�n

(x i |&+i+ yi |&&j )

For example,

R (1, 1)
: =[:][:&1](_1+{1),

R (2, 2)
: =[:][:&1]([:][:&1](_1+{1)(_2{1+_1{2)

+[:+1][:&2](_2&{2)2),
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R (3, 3)
: =[:]3 [:&1]3 (_1+{1)(_3+_2{1+_1{2+{3)(_3{2+_2{3)

&[:+2][:]2 [:&1]2 [:&3](_1+{1)(_3+{3)(_3 {2+_2{3)

+[:+1]2 [:][:&1][:&2]2 (_2{1+_1{2)(_3+{3)2

+[:+1][:]2 [:&1]2 [:&2]((_1+{1)(_3{1&_1{3)2

+(_2&{2)2 (_3{2+_2{3)&3(_1+{1)(_3+{3)(_3 {2+_2 {3))

+[:+2][:+1][:][:&1][:&2][:&3](_3+{3)3

We note that R (n, n)
1 =0 holds for all n.

It can be shown that R (m, n)
: (x; y) is a sum of products of determinants.

Namely let 4(m, n) denote the set of partitions *=(*1 ,..., *m) satisfying
n�*1� } } } �*m�0. For * # 4(m, n) we write *� $=(m&*$n ,..., m&*$1),
where *$=(*$1 ,..., *$n) denotes the conjugate partition. Then

R(m, n)
: (x; y)= `

m

i=1

[:&i+n] } `
n

j=1

[:& j+m]

_ :
* # 4(m, n)

S*(x; :+n, |) S*� $( y; :+m, |)

where

S*(x; :, |)=det \[:&*$i+i&2j ]
[:&i ]

_*$i&i+ j (x)+1�i, j�N

with N�n.

6. DISCUSSIONS

In this paper we have developed an algebraic approach to the ABF
models in regime II, using free fields. We have found the following.

First, our results immediately give an integral representation for
correlation functions of these non-critical models. We computed exactly the
simplest integrals for the nearest neighbor correlation functions. The result
supports the validity of our construction. Beyond this case, it remains a
technical open problem to perform multiple contour integrals explicitly.

Second, following the prescription of ref. 2 we found states which
diagonalize the row-to-row transfer matrix in the thermodynamic limit.
These are obtained by acting with type II vertex operators on the vacuum.
Compared with other lattice models studied so far, a nice feature is that
these operators do not contain contour integrals. This gives us a hope for
handling them more effectively in further analysis.
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As an application we studied the continuous limit of the traces of
vertex operators of type II. We obtained a family of functions satisfying
Watson's equations as well as kinematical pole conditions. The former is a
consequence of the commutation relation (5.7) and the property of the corner
Hamiltonian as the grading operator, while the latter follows from

iBa
1� (;1) Ba

1(;2)=
1

;1&;2&i?
_id+O(1) (;1 � ;2+i?)

On these grounds, we interpreted the resulting formulas as form-factors of
some local operators in the Zk invariant massive scattering theory with
minimal S-matrices. Our analysis is not complete, since we have considered
only the Zk neutral sector, which corresponds to having the same number
of 9+(v)'s and 9&(v)'s in the trace. The bound state conditions also
remain to be worked out.

There are other unsolved problems which deserve attention. Of par-
ticular interest is the problem of identifying the local operators correspond-
ing to the projection operators. The form-factors Q� (n, n)

a are proportional to
M220, a&1. This mass dependence indicates that the projection operators
correspond to perturbations of the neutral primary fields in the parafer-
mionic CFT with the respective conformal dimensions.8 An argument in
favor of this proposal is that the cluster property characteristic to the
``exponential operators'' seems to hold.

It is natural to identify the case a=1, 20, 0=0, with the form-factor of
the identity operator. The fact that Q� (n, n)

1 =0 for all n agrees with this iden-
tification. In the case a=3, 20, 2=2�(k+2), we infer that the Q� (n, n)

3 give the
form factors of the first energy operator. Since this operator perturbs the
parafermionic CFT into the massive region, the corresponding form factors
are proportional to those of the trace of stress-energy tensor. One can show
that, for a=3, the polynomial R (n, n)

2 (x; y) in the formula (5.12) contains a
factor

(_1+{1)\_n&1

_n
+

{n&1

{n +
as we expect for form factors of the stress-energy tensors.(31, 25)

However, our understanding of this problem of identification of local
operators, as well as that of deriving the vacuum expectation values of
local fields, is still incomplete.

In the scaling limit we considered only the translationally invariant
sector m=0. From the lattice point of view, the other sectors have equal
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rights. It would be interesting to understand the field theoretical meaning
of the traces corresponding to the m{0 sectors.

Although practically all the technical elements of the construction
have been known, we think that the interpretation as a free field realization
of ABF models in regime II is rather interesting. It opens up a way for
applying algebraic methods to the study of physical phenomena in these
models.

After completing the work we have been informed that the results of
the preprint(32) on the formfactors of the stress energy tensor in the Scaling
Three State Potts model are available in the paper.(33) 9 To compare
answers we examined simplest n=1, 2, 3 cases of (5.12) in Z3 model and
found that our formula for k=3, a=3 coincides up to a constant with
matrix elements of the stress energy tensor in ref. 33, as it was expected.

APPENDIX A. FORMULAS FOR OPERATORS

We give here explicit formulas for the operators in the deformed
parafermion theory.

Oscillators. We consider two kinds of oscillators aj, n ( j=1, 2,
n # Z"[0]) and ``zero-mode'' operators Pj , Qj ( j=1, 2) satisfying

[a1, n , a1, n$]=
[2n]x [(k+2) n]x

n
$n+n$, 0 ,

[a2, n , a2, n$]=&
[2n]x [kn]x

n
$n+n$, 0 ,

[P1 , Q1]=2(k+2), [P2 , Q2]=&2k

where

[n]x=
xn&x&n

x&x&1

Forck Space. For l, m # Z we set

Fm, l= C[a1, &n , a2, &n (n>0)] |m, l) ,

P1 |m, l)= l |m, l) , P2 |m, l) =&m |m, l) ,

eQ1 �2(k+2) |m, l)=|m, l+1) , eQ2 �2k |m, l) =|m+1, l)
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Grading Operator. We set D=Dosc+Dzero, with

Dosc= :
n>0

n2

[2n]x [(k+2) n]x
a1, &n a1, n& :

n>0

n2

[2n]x [kn]x
a2, &n a2, n ,

Dzero=
(P1+1)2&1

4(k+2)
&

P2
2

4k

We have

[D, aj, n]=&naj, n ,

[D, Q1]= P1+1, [D, Q2]=P2 ,

D |m, l) = \(l+1)2&1
4(k+2)

&
m2

4k+ |m, l)

Notational Convention. We use the following notation.

,j (A; B, C | z; C$)=&
A

BC
(Qj+Pj log z)+ :

n{0

[An]x

[Bn]x [Cn]x
aj, nz&nxC$ |n|,

,j (B | z; C )=,j (A; A, B | z; C ),

, (\)
j (A; B | z)=

A
B

Pj log x+(x&x&1) :
n>0

[An]x

[Bn]x
aj, \nz�n

We use the ``additive'' parameters u, u$,... and the ``multiplicative'' ones
z, z$,... on an equal footing. Unless otherwise stated explicitly, they are
related by

z=x2u, z$=x2u$,...

The following are the list of operators used in the text.

Type II VOs.

9\(u)=�
1

x&x&1 (9\, +(u)&9\, &(u)),

9\, =(u)=z&1�k_:exp \\,2 \k | z; \
k
2+

\=, (=)
1 (1; 2 | zx\=(k�2))&=, (=)

2 (1; 2 | zx\=((k+2)�2))+ :
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More generally we set

9a(u)=z&a(a&1)�k :
a

j=0

(&1) j x(a&1)( j&a�2) `
j

i=1

[a&i+1]x

[i ]x

_: `
a& j

i=1

9&, & \&
a+1

2
+i+u+ } `

a

i=a& j+1

9&, + \&
a+1

2
+i+u+ :

(A.1)
Screening Current.

S(u)=&
1

x&x&1 (S+(u)&S&(u)),

S\(u)=:exp \,1 \k+2 | z; &
k+2

2 +
\, (\)

2 (1; 2 | zx�(k+2)�2)\, (\)
1 (1; 2 | zx�k�2)+ :

Type I VOs.

8&(u)=z(k&1)�2k(k+2)

_:exp \&,1 \1; 2, k+2 | zxk;
k+2

2 +&,2 \1; 2, k | zxk;
k
2++ :

8+(u)=�
C8(z)

dz$ 8&(u) S(u$)
[u&u$& 3

2&P1]
[u&u$& 3

2]

8*&(u)=
g

[P1+1]
z(k&1)�2k(k+2)

_:exp \&,1 \1; 2, k+2 | z;&
k+2

2 +&,2 \&1; 2, k | z;&
k
2++ :

8*+(u)=&�
C8*(z)

dz$ 8*&(u) S(u$)
[u&u$& 1

2&P1]
[u&u$& 1

2]

The contours C8(z), C8*(z) are specified by the rules

C8(z): z$=zx&3+2(k+2) n (n>0) inside,

=zx&1+2(k+2) n (n�0) outside,

C8*(z): z$=zx&1+2(k+2) n (n�0) inside,

=zx1+2(k+2) n (n�0) outside
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and

g=(x&x&1) x&1�(k+2)

_
(x2k+2, x4k+2; x2k, x2k+4)�

(x2k, x4k+4; x2k, x2k+4)�
(x2k+2; x2k+4)2

� (x2k+4; x2k+4)�

!-' System.

!(u) =:exp \,1 \2 | z;
k
2++,2 \2 | z;

k+2
2 ++ :

'(u) =:exp \&,1 \2 | z;
k
2+&,2 \2 | z;

k+2
2 ++ :

Deformed W Currents. The first DWA current W 1(u) is

W1(u)=[k+1]x 4&(u)+[k+2]x 40(u)+[k+1]x 4+(u)

where 4\(u) and 40(u) are

4\(u)=x\1g&1x(1&k)�kz(1&k)�k(k+2)

_:8&(k+2+u)[P] 8*&(u) S& \k+1
2

�
k+2

2
+u+ :

40(u)=& g&1x(1&k)�kz(1&k)�k(k+2)

_:8&(k+2+u)[P] 8*&(u) S+ \k+
3
2

+u+ :

In general the DWA currents W j (u) ( j=1, 2,...) are given by

W j (u)= :
a, b, c�0

a+b+c= j

C j
a, b, c : `

a

i=1

4& \ j+1
2

&i+u+

_ `
a+b

i=a+1

40 \ j+1
2

&i+u+ } `
j

i=a+b+1

4+ \ j+1
2

&i+u+ :

where C j
a, b, c is

C j
a, b, c= `

a

i=1

[k+2&i ]x

[i ]x
} `

b

i=1

[k+1+i ]x

[i ]x
} `

c

i=1

[k+2&i ]x

[i ]x
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Comparison of Notation. We have followed the notation in
ref. 15 with minor changes. Referring to the symbols in ref. 15 by the sub-
script ``K '', we have

x=qK

Fm, l =FPF
l, m, K

S(u)=SK (z)

'(u)='K (z)

8&(u)=,1, 1, K (qkz) z(k&1)�2k(k+2)

8*&(u)=
g

[P1+1]
,1, &1, K (z) z(k&1)�2k(k+2)

9+(u)=9 -
K (z) z&1�k

9&(u)=9K (z) z&1�k

We have introduced fractional powers of z in order that the homogeneity
property

x2vDY(u) x&2vD=Y(u+v)

holds for Y=S, 8\ , 8*\ , 9\ , !, 9a , W j. As for ' we have x2vD'(u) x&2vD

='(u+v) x2v.

APPENDIX B. RESOLUTION BY !-' SYSTEM

We summarize the main points concerning the resolution by the !-'
system.

On the space Fm, l with m#l mod 2, we have expansions of the form

'(u)= :
n # Z

'nz&n&1, !(u)= :
n # Z

!nz&n

The Fourier components satisfy

['n , 'n$]+=0, [!n , !n$]+=0, ['n , !n$]+=$n+n$, 0
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The components '0 , !0 commute with D. Since !2
0='2

0=0 and !0'0+'0 !0

=id, the complex

} } } w�
'0 Fm&k, l&(k+2) w�

'0 Fm, l w�
'0 Fm+k, l+k+2 w�

'0 Fm+2k, l+2(k+2) w�
'0 } } }

is exact. Let

F� m, l =Ker '0 |Fm, l

=Coker '0 |Fm&k, l&(k+2)

Then, for an operator O on � m#l mod 2 Fm, l commuting with '0 , we have

trF� m, l
(O)= :

n�0

(&1)n trFm+kn, l+(k+2) n
(O)

=& :
n<0

(&1)n trFm+kn, l+(k+2) n
(O)

APPENDIX C. CALCULATION OF THE TRACE

We outline the computation of the trace of a product of type II
operators focusing attention to the neutral case

O=x2kD9+(v1) } } } 9+(vn) 9&(v$1) } } } 9&(v$n) (C.1)

It is convenient in what follows to consider the oscillator part and the zero
mode part separately. Let us write

9\, =(v)=9 osc
\, =(v) 9 zero

\, =(v)

9 zero
\, =(v)=e�Q2 �kz�P2 �k&1�kx\=P1 �2&=P2 �2

Oscillators. The contributions from the oscillator part

((O)) =
trFm, l

(x2kDosc
Oosc)

trFm, l
(x2kDosc

)

are given by the following rules:

C&N((9=1 , =$1
(v1) } } } 9=N , =$N

(vN)))

= `
1�i< j�N

C&2((9=i , =$i
(v i ) 9=j , =$j

(v j ))) (C.2)

916 Jimbo et al.



for �N
i=1 =i=0, and

((9+, =1
(v1) 9+, =2

(v2)))

=((9&, &=1
(v1) 9&, &=2

(v2)))

=C2F(v)
[v+(=1&=2)�2]*

[v&1]*
x&(2�k)(1+(=1&=2 )�2) v+(1+=1=2)�2k+1+(=1&=2)�2

(C.3)

((9+, =1
(v1) 9&, =2

(v2)))

=((9&, &=1
(v1) 9+, &=2

(v2)))

=C2F \v&
k
2+

&1 [v&(k�2)&(=1+=2)�2]*
[v&(k�2)]*

_x((=1+=2)�k) v&((1+k)�2k)(1+=1=2)&(=1+=2)�2 (C.4)

where v=v2&v1 , F(v) is given in (4.3), and

C=(x2k; x2k)�
(x2+4k; x2k, x2k)�

(x&2+2k; x2k, x2k)�

Zero Mode. The trace over the zero mode in the Fock space is
taken in a standard fashion, following (3.9), (3.10). As we show at the end
of this appendix, our operator (C.1) satisfies in addition

trFm, l
(O0)=trFm, &l&2

(O1) (C.5)

Then, for any fixed real numbers h, h$ # R, the trace can be rewritten as
follows.

trH 0(Cm, l )
(O)

=\ :
s�h

:
n�0

& :
s>h

:
n<0

+ (&1)n trFm+kn, l+(k+2)(n&2s)
(O0)

&\ :
s< &h$

:
n�0

& :
s� &h$

:
n<0

+ (&1)n trFm+kn, &l&2+(k+2)(n&2s)
(O1)

=\ :
n�0
s�h

& :
n<0
s>h

& :
n�0

s>n+h$

+ :
n<0

s�n+h$

+ (&1)n trFm+kn, l+(k+2)(n&2s)
(O0)

=\ :
&n1&h$�n2�n1+h

& :
n1+h<n2< &n1&h$+ (&1)2n1 trFm+2n2 k, l+2n1(k+2)

(O0)
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where the last sum is taken over n1 , n2 # 1
2Z such that n1&n2 # Z. Note that

the result is independent of the choice of h, h$.
Accordingly, the sum of the zero-mode contributions coming from

different Fock spaces can be expressed by the function

1 (h, h$)
m, l ( y1 , y2 | {) (l#m mod 2)

=
1

'({)2 \ :
&n1&h$�n2�n1+h

& :
n1+h<n2< &n1&h$

+ (&1)2n1

_e2?i{ (
(l+1+2n1(k+2))2

4(k+2)
&

(m+2n2 k)2

4k ) e?i(l+1+2n1(k+2)) y1&?i(m+2n2k) y2

(C.6)

where the sum is taken over n1 , n2 # 1
2Z with n1&n2 # Z, and we set

1 (h, h$)
m, l ( y1 , y2 | {)=0 for l�m mod 2. Choosing h=h$=0, for example, we

obtain the formula (4.2) for the Qa(m). We note the properties

1 (h, h$)
m+2k, l ( y1 , y2 | {)=1 (h+1, h$&1)

m, l ( y1 , y2 | {) (C.7)

1 (h, h$)
m+k, k&l (&y1 , y2 | {)=1 (&h$+=$, &h+=)

m, l ( y1 , y2 | {) (C.8)

where ==[ 0
&1

(h � Z)
(h # Z) and =$=[ 1

0
(h$ � Z)
(h$ # Z) .

Modular Transform. To study the continuous limit, it is useful to
consider the modular transformation { � &1�{. Unfortunately the func-
tions 1 (h, h$)

m, l ( y1 , y2 | {) do not enjoy simple transformation properties
individually. A way around this difficulty is proposed in ref. 27. Recall that
up to an overall scalar factor the Q (n, n)

l+1 (m) has the form

:
+, & # Z

f (n)
+, & 1 (h, h$)

m, l ( y1 , y2 | {) (C.9)

where f (n)
+, & is a function of +, & # Z given below (C.10), and y1=

({�2k)(+&&), y2=({�k)(2v�k&(++&)�2) with v=�n
i=1 (k�2&v i&ui ).

Making use of the independence of (C.9) on h, h$, it is shown in ref. 27 that
a certain generating function of (C.9) with respect to m, h, h$ can be
reexpressed in terms of theta functions and (the zero mode contribution of )
the characters of the N=2 superconformal algebra. From the knowledge of
the modular property for the latter, the following relation can be deduced
for the sum (C.9).
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:
+, & # Z

f (n)
+, &1 (h, h$)

m, l ( y1 , y2 | {)

=
1

- k(k+2)
:

+, & # Z

f (n)
+, & e&(i?�2{)((k+2) y2

1&ky2
2)

_ :
k

l $=0

:
k&1

m$=&k

sin
?(l+1)(l $+1)

k+2
e&i?mm$�k1 (h, h$)

m$, l $ \y1

{
,

y2

{ } &
1
{+

By noting (C.8) and the property f (n)
&, += f (n)

+, & (see below), the sums in the
last line can also be written as

+2 :
k

l $=0

:
k&1

m$=0

sin
?(l+1)(l $+1)

k+2
e&i?mm$�k1 (h, h$)

m$, l $ \y1

{
,
y2

{ } &
1
{+

An Identity. Let us verify the property (C.5). For +, & # Z, set

f (n)
+, &(u1 ,..., un ; v1 ,..., vn)

=: `
n

i=1

+i & i } `
1�i, j�n

[ui+vj+(+i+&j )�2]*

_ `
1�i< j�n

[u i&uj&(+i&+j )�2]*
[ui&u j]*

[v i&v j&(&i&&j )�2]*
[vi&vj]*

(C.10)

Here the sum is taken over +i , &i=\1 (i=1,..., n) satisfying �n
1=1 +i=+,

�n
i=1 &i=&. it is easy to see that this function is holomorphic and sym-

metric in (u1 ,..., un) (resp. (v1 ,..., vn)). The relation (C.5) reduces to the
identity

f (n)
+, &(u1 ,..., un ; v1 ,..., vn)= f (n)

&, +(u1 ,..., un ; v1 ,..., vn) (C.11)

Clearly (C.11) is true for n=1. To show it in general, let g (n)
+, & stand for

the difference of the left hand side and the right hand side of (C.11). Then

g (n)
+, &(u1 ,..., un ; v1 ,..., vn)

=&g (n)
+, &(v1 ,..., vn ; u1 ,..., un)

g (n)
+, &(u1+k,..., un ; v1 ,..., vn)

=(&1)n g (n)
+, &(u1 ,..., un ; v1 ,..., vn)

g (n)
+, & \u1+

k
{

,..., un ; v1 ,..., vn+
=(&ei?�{)n e(2?i�k)(nu1+v1+ } } } +vn+(++&)�2) g (n)

+, &(u1 ,..., un ; v1 ,..., vn)
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g (n)
+, &(u1 ,..., un&1 , u; v1 ,..., vn&1 , &u)

= :
+n=\1

[+n]* `
n&1

i=1

[ui&u++n]* [vi+u++n]*

_g (n&1)
+&+n , &&+n

(u1 ,..., un&1 ; v1 ,..., vn&1)

From these properties, we conclude that g (n)
+, &=0 by induction on n.
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